

Markscheme

May 2018

Chemistry

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

C	Question		Answers	Notes	Total
1.	а	i	consists of single/one sheet/layer «of carbon atoms» ✓	Do not accept "sp²" alone without reference to single/one sheet/layer.	
			graphene has no density measurement OR graphene has no distance between layers data OR graphene has large specific surface area «compared to graphite» ✓	Accept "thickness of one atom" OR "consists of a plane" for M1.	2
1.	а	ii	Any one of these alternatives: ALTERNATIVE 1 $ \frac{1.3 \times 10^{11}}{76 \times 10^{6}} ^{\text{N}} $ $ 1.7 \times 10^{3}/1711 ^{\text{J}} $ ALTERNATIVE 2 $ 1600 \times 76 \times 10^{6} = 1.2 \times 10^{11} ^{\text{wis less than tensile strength of graphene}} ^{\text{J}} $	Accept any value in the range 1700–27 083. Answer may be expressed in scientific notation or otherwise. Accept any value calculated which is less than the graphene tensile strength	1
			ALTERNATIVE 3 $\frac{1.3 \times 10^{11}}{1600} = 8.1 \times 10^{7}$ «is greater than upper end of tensile strength for graphite» ✓	based on a value chosen from within the 4.8 – 76×10^6 range.	

(Question 1a continued)

C	Question		Answers	Notes	Total
1.	a	iii	«graphene has a high electron mobility of» 15 000–200 000 «cm² V⁻¹ s⁻¹» ✓ smaller/zero ✓	A specific value or range of values must be given. Accept any value in the 15 000–200 000 «cm² V-1 s-1» range.	1
			no delocalized electrons/electrons are bound/electrons not free to move/electrons not free to roam OR localized electrons «in sigma bonds» OR large band gap ✓	Accept "diamond is a dielectric" OR "diamond does not conduct electricity" for M2. Award [1 max] for just "immobile/less mobile". Award [2] for "electrons immobile «in diamond» due to the large band gap" OR "electrons «in diamond» immobile since electrons are localized «in the sigma bonds»".	2

C	uestion	Answers	Notes	Total
1.	С	shorter bonds in graphene		
		OR		
		bonds in graphene intermediate between single and double		
		OR		
		bond order in graphene is 1.33		
		OR		
		delocalization creates stronger bonds		2
		OR		_
		shorter bonds are stronger ✓		
		stronger/shorter bonds require higher temperature/faster thermal motion to be altered		
		OR		
		stronger/shorter bonds require greater energy to be broken ✓		

C	Question	Answers	Notes	Total
2.	а	Any two of: Ethene: «carbon–carbon» double bond AND Ethane: «carbon–carbon» single bond ✓	Do not accept "different number of atoms/hydrogens/bonds" etc.	
		ethene has a shorter carbon–carbon bond «than ethane» ✓	Accept "Ethene: unsaturated AND Ethane: saturated" OR "Ethene: has a double bond AND Ethane: does not" OR "Ethene: two flexible bonds between	
		Ethene: planar/two-dimensional/2-D AND Ethane: tetrahedral «carbons»/ three-dimensional/3-D	carbon atoms AND Ethane: one". Accept any reasonable physical description of the two different	
		OR Ethene: each carbon surrounded by three electron domains AND Ethane: each carbon surrounded by four electron domains	molecular models based on a variety of kits for M1.	
		OR		
		different molecular geometries/shapes ✓		2 max
		rotation about carbon–carbon inhibited/blocked in ethene <i>AND</i> not in ethane ✓		
		«H–C–C/H–C–H» bond angles different	For ethene, accept any bond angle in the range 117–122°.	
		OR Ethene: «bond angles approximately» 120° AND Ethane: 109.5/109°✓	Award [2] if any two of the concepts listed are shown in a correctly labelled or annotated diagram.	
			Award [1 max] for two correct statements for either molecule but with no comparison given to the other.	
			Award [1 max] for suitable unlabeled diagrams of both compounds.	

C	Question		Answers	Notes	Total
2.	b	i	Answers 6 carbon atoms labelled in correct positions both nitrogen atoms labelled in correct positions bromine AND chlorine atoms labelled in correct positions CI CI CI Br	Notes	Total

(continued...)

(Question 2b continued)

Question		ion	Answers	Notes	Total
2.	b	ii	accurate bond angles/lengths can be measured OR	Accept "precise" for "accurate".	
			«using mathematical functions» can calculate expected shapes based on energy minimizations		
			OR	Accept "computer generated structural	
			better visualization of possible bond rotations/conformation/modes of vibration <i>OR</i>	representation is normally what is expected in order to be published «in a scientific journal»".	
			can visualize macromolecules/proteins/DNA		
			OR		
			hydrogen bonding «networks» can be generated/allows intermolecular forces «of attraction» to be simulated		
			OR		
			more variety of visualization representations/can observe space filling		1
			OR	Accept "easier to see different sizes of	'
			can produce an electron density map/electrostatic potential map	atoms/atomic radii".	
			OR		
			once model is generated file can be saved for future use/computer models can be shared globally by scientists		
			OR		
			helps design molecules of biological significance/assists in drug design «using libraries»		
			OR		
			can predict molecular interactions with solvents/can predict physical properties/can predict spectral data/can examine crystal structures		
			OR «often» easier to construct/modify «model» ✓		

(continued...)

(Question 2b continued)

C	Question		Answers	Notes	Total
2.	b	iii	bonds within ring have resonance OR	There must be reference to a ring or cyclic structure.	
			contains delocalized «conjugated pi» electrons in ring ✓	Accept "alternating single and double bonds in a ring".	
				Accept "ring which shows resonance/delocalization".	1
				Accept "follows Hückel/4n +2 rule".	
				Do not accept "contains one or more benzene rings".	

-9-

Section B

Option A — Materials

Questio	n Answers	Notes	Total
3. a	Alloy: mixture of metal with other metals/non-metals OR mixture of elements that retains the properties of a metal ✓ Composite: reinforcing phase embedded in matrix phase ✓	Award [1 max] for implying "composites only have heterogeneous/nonhomogeneous compositions".	2
3. b	effective for yttrium «but less/not for nickel» \checkmark points on nickel graph do not lie on « $y = x$ » line OR cannot be used for low concentrations of nickel OR concentration of nickel is lower than recorded value \checkmark	Accept "ICP-OES is more accurate for lower yttrium concentrations than higher concentrations" for M1. Accept [Ni] and [Y] for concentrations of nickel and yttrium. Accept "detection limit for yttrium is lower than for nickel" for M2. Award [1 max] for "more accurate for yttrium at lower concentrations AND nickel at higher concentrations".	2

C	Question		Answers	Notes	Total
3.	С	i	Graph 1: determines wavelength of maximum absorption/maximum intensity «for vanadium» ✓	Do not accept just "determines maximum wavelength/ λ_{max} " for M1.	
			Graph 2: determines absorption of known concentrations «at that wavelength» OR estimates [V]/concentration in a sample using «the signal» intensity ✓	Do not accept "calibration curve" for M2.	2
3.	С	ii	«14950 = 392.19 x + 147.62» x = 37.74 «µg kg ⁻¹ » ✓	Answer must be given to four significant figures. Do not accept values obtained directly from the graph.	1
3.	С	iii	vanadium reduced in first reaction <i>AND</i> oxidized in second reaction <i>OR</i>	Do not accept "reactants adsorb onto surface AND products desorb".	
			V ₂ O ₅ oxidizes SO ₂ in first reaction AND VO ₂ reduces O ₂ in second reaction		
			OR		2
			vanadium returns to original oxidation state «after reaction» ✓	Accept "oxidation number" for "oxidation state".	2
			provides an alternative reaction pathway/mechanism «with a lower activation energy» ✓		

C	Question		Answers	Notes	Total
4.	а	i	2 ✓		1
4.	а	ii	$n\lambda = 2d\sin\theta$ OR $\theta = \sin^{-1}\left(\frac{n\lambda}{2d}\right) \checkmark$ $\theta = \sin^{-1}\left(\frac{150}{2\times 303}\right) = 14.3 \text{ e}^{\circ} \text{ w} \checkmark$	Award [2] for correct final answer.	2
4.	а	III	$m = $ « $\frac{50.94}{6.02 \times 10^{23}} = $ » 8.46×10^{-23} «g» \checkmark		1
4.	а	iv	«303 pm = 303 × 10 ⁻¹⁰ cm» V = «(303 × 10 ⁻¹⁰) ³ =» 2.78 × 10 ⁻²³ «cm ³ » ✓		1
4.	а	v	«8.46 × 10 ⁻²³ g × 2 =» 1.69 × 10 ⁻²² «g» ✓ $d = \frac{1.69 \times 10^{-22} \text{ g}}{2.78 \times 10^{-23} \text{ cm}^3} = 6.08 \text{ «g cm}^{-3} \text{»} \checkmark$	Accept any value in the range 6.07–6.09 «g cm ⁻³ ». Award [2] for correct final answer.	2

(Question		Answers	Notes	Total
4.	b	i	Any one of these alternatives: ALTERNATIVE 1 disrupt enzyme binding sites ✓ which can inhibit/over-stimulate enzymes ✓ ALTERNATIVE 2 disrupt endocrine system ✓ because they compete for active sites of enzymes/cellular receptors ✓ ALTERNATIVE 3 form complexes/coordination compounds ✓ which can bind to enzymes ✓	Notes	Total 2
4.	b	ii	act as oxidizing/reducing agents OR act as catalysts ✓ which can initiate unwanted reactions ✓ V ⁴⁺ (aq) + H ₂ O ₂ (aq) → V ⁵⁺ (aq) + OH ⁻ (aq) + •OH (aq) ✓	Accept "can undergo oxidation— reduction reactions" for M1 in Alternative 4. Do not accept • on H.	
4.	U	<u> </u> "	$V = (aq) + \Pi_2O_2(aq) \rightarrow V^{-1}(aq) + O\Pi(aq) + O\Pi(aq) \checkmark$	Accept answer without •.	1

C	uestion	Answers	Notes	Total
5.	а	Atactic CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH-CH ₂ -CH-CH ₂ -CH-CH ₂ -CH-CH ₂ -CH-CH ₂ -CH-CH ₃ ✓	Do not accept syndiotactic (alternating orientation of the CH ₃ groups), eg, CH ₃ CH ₃ CH ₃	
		Isotactic CH_3	CH ₃ CH ₃ —CH ₂ —CH—CH ₂ —CH—CH ₂ —CH— CH ₃ —CH ₂ —CH—CH ₂ —CH—CH ₂ —CH— CH ₃ for M1 or M2. Accept any correct atactic ordering of CH ₃ groups.	2
			Penalize missing hydrogens or incorrect bond connectivities once only.	
			Accept skeletal structures.	
			Ignore continuation bonds, brackets and "n" indices in structures.	
5.	b	Any two of:		
		Recycling: shredded/melted/reformed AND Reuse: used in its curr form ✓	ent	
		recycling is more energy intensive «than reusing» ✓		2 max
		recycling degrades the quality of plastic but reusing «typically» does not ✓	es	ZIIIAX
		recycling breaks down original product to form a new product when reuse extends product life ✓	reas	

– 14 –

C	Questi	on	Answers	Notes	Total
5.	С	i	Any one of these alternatives: ALTERNATIVE 1 Polyester: produced by condensation/esterification polymerization ✓ Polyethene: produced by addition polymerization ✓ ALTERNATIVE 2 Polyester: reaction between monomers/molecules containing two functional groups per molecule ✓ Polyethene: reaction between monomers/molecules containing a carbon–carbon double bond/C=C ✓ ALTERNATIVE 3 polyester polymerization forms a by-product/H₂O ✓	Accept the names of different catalysts used for each polymerization as an alternative answer.	2
5.	С	ii	polyethene has no by-products/100% atom economy ✓ more pliable/flexible materials OR more durable/non-corrosive/longer-lasting materials OR greater variety of materials OR lower density OR can be clear/translucent ✓	Accept "more adaptable". Do not accept just "more useful".	1

strong intermolecular forces **AND** allow molecule to align in specific orientations \checkmark

-16-

Option B — Biochemistry

C	uestion	Answers	Notes	Total
7.	а	Type of reaction: condensation OR esterification/triesterification OR nucleophilic substitution/nucleophilic displacement/S _N 2 ✓ By-product: water/H₂O ✓	Do not accept just "substitution/displacement".	2
7.	b	ALTERNATIVE 1 $ \frac{334}{253.8} = 1.32 \text{ AND } < \frac{100}{304.5} = 0.328 \checkmark $ $ \frac{1.32}{0.328} \approx 4 \checkmark $ ALTERNATIVE 2 $ (334 \times \frac{304.5}{100} \approx 1017 \checkmark $ $ (\frac{1017}{253.8} \approx 4 \checkmark $	Award [2] for correct final answer.	2

– 17 –

C	uestion	Answers	Notes	Total
7.	С	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Accept a skeletal structure. Penalize missing hydrogens or incorrect bond connectivities once only in Option B. Accept condensed formula for ester.	2
		ester section as boxed ✓	Do not accept structures with one or two ester groups.	
7.	d	has affected consumption of <i>trans</i> -fats/ <i>cis</i> -fats/saturated fats/unsaturated fats/hydrogenated/artificially altered fats <i>OR</i> reduce/eliminate <i>trans</i> -fats/increase in <i>cis</i> -fats <i>OR</i> reduce/eliminate saturated fats <i>OR</i> increase unsaturated fats ✓	Do not accept "decrease in fat" alone. Accept "lipid" for "fats".	1
7.	е	$\frac{29.9 \text{ g}}{150.15 \text{ g mol}^{-1}}$ =» 0.199 «mol» ✓ «0.199 mol × 205.9 kJ mol ⁻¹ =» 41.0 «kJ» ✓	Ignore significant figures in M1. Award [2] for correct final answer. Award [1 max] for incorrect significant figures in final answer.	2

C	uestion	Answers	Notes	Total
8.	а	H_2N — CH — C — N — CH — C — OH Accept a coordinate of the coo	tterion form of dipeptide. ondensed structural formula al structure. nissing hydrogens or incorrect ectivities once only in Option	2
			ly be scored if M1 correct.	
8.	b	3 ✓		1
8.	С	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	harge on incorrect atom once hissing hydrogens or incorrect ectivities once only in Option adensed structural formulas.	2

– 19 –

C	uestio	n Answers	Notes	Total
8.	d	ALTERNATIVE 1 wpH = $6.36 + \log \left(\frac{2.50 \times 10^{-2}}{1.25 \times 10^{-3}} \right) = $	Do not accept "«pH =» 8".	
		7.66 \checkmark ALTERNATIVE 2 « $K_a = 4.4 \times 10^{-7} = [H^+] \left(\frac{2.50 \times 10^{-2}}{1.25 \times 10^{-3}} \right), [H^+] = 2.2 \times 10^{-8} \text{ mol dm}^{-3}$ «pH =» 7.66 \checkmark		1
8.	е	HOOC CH ₃ AND H ₃ C H ₃ C H ₃ C H ₄ C H ₄ C H ₄ C H ₃ C	Penalize missing hydrogens or incorrect bond connectivities once only in Option B. Wedges AND dashes must be used.	1
8.	f	$ \frac{0.725}{49650 \text{ dm}^3 \text{ cm}^{-1} \text{ mol}^{-1} \times 1.00 \text{ cm}} $ =» 1.46 × 10 ⁻⁵ «mol dm ⁻³ » ✓		1
8.	g	0.65 «μg cm ⁻³ » √	Accept any value in the range 0.60–0.70 «µg cm ⁻³ ».	1

Question	Answers	Notes	Total
9.	Any two of:	Accept formulas for names.	
	replaces plastics with biodegradable/starch/cellulose based plastics ✓	Award mark for any other reasonable specific green chemistry example that	
	use enzymes instead of polluting detergents/phosphates OR	prevents the release of pollutants/toxic chemicals into the environment by	
	use of enzymes means lower temperatures can be used	changing the method or the materials used.	
	ORuse enzymes instead of emulsifiers to treat oil spillsOR	Do not award mark for methods that involve clean-up of pollutants from the environment such as host-guest	
	use enzymes to produce esters at lower temperatures/without sulfuric acid ✓	chemistry or alternative energy sources.	2 max
	replace organic/toxic solvents with carbon dioxide ✓		
	replace polymers from fossil fuel with bamboo/renewable resources ✓		
	develop paint resins reducing production of volatile compounds «when paint is applied» ✓		
	industrial synthesis of ethanoic/acetic acid from methanol and carbon monoxide has 100% atom economy ✓		
	energy recovery ✓		

-22-

C	uestion	Answers	Notes	Total
11.	a	(uotental pressure of oxygen / kPa curve below original curve «showing lower affinity for oxygen» beginning at 0 ✓	Award mark if end of student curve does not finish at same location as original curve.	1
11.	b	Any two of: foetal hemoglobin has higher affinity for oxygen «than normal hemoglobin» ✓ foetal hemoglobin is less sensitive to inhibitors/2,3-bisphosphoglycerate/ 2,3-BPG/DPG «than normal hemoglobin» ✓ foetal hemoglobin contains two gamma units instead of the two beta units found in adult hemoglobin ✓		2 max

Question	Answers	Notes	Total
12.	Any two of: pentose «sugar» OR deoxyribose ✓ phosphate «group» ✓ «organic» nitrogenous base OR nucleobase OR nucleic base OR	Accept names or formulas. Accept "ribose" for M1. Do not accept "phosphoric acid". Accept the four bases together: "adenine, cytosine, thymine, guanine".	2 max
	purine OR pyrimidine ✓		

Option C — Energy

– 25 –

C	Questi	ion	Answers	Notes	Total
13.	b	i	fuels can be compressed more without undergoing «unwanted» auto-ignition ✓	Accept "burns smoother without undergoing «unwanted» auto-ignition" OR "fuel does not auto-ignite".	1
13.	b	ii	produces more branched chain hydrocarbons «with higher octane rating» OR produces aromatics «which have higher octane rating» OR produces cyclohexanes «which have higher octane rating» ✓	Accept "increase branches". Do not accept "produces benzene". Do not penalize for "benzene" if penalty applied in 2.b.iii. Accept "produces cyclic structures".	1
13.	С		n = 6 ✓	Award [3] for correct final answer.	3

(Question	Answers	Notes	Total
14.		Any three of: IR/long wavelength/low frequency radiation radiated/emitted by the Earth's «surface absorbed in the bonds» ✓ bond length/C=O changes OR «asymmetric» stretching of bonds OR bond angle/OCO changes ✓ polarity/dipole «moment» changes OR	Notes Do not accept terms such as "reflect" OR "bounced" OR "trapped".	Total 3 max
		dipole «moment» created «when molecule absorbs IR» ✓ «some of» energy is then re-radiated towards «the surface of the» Earth ✓		

only some have long lifetimes (eg,

CFC-115, CFC-113).

-28 -

15.	а	$\frac{813K - 296K}{813K} \times 100 $ » = 64 « % » √		1
15.	b	35% of chemical/potential energy available in coal is transformed to electricity/electrical energy ✓ not all chemical energy from burning fuel transferred into heating water OR energy dispersed elsewhere/energy lost due to friction of moving parts OR heat loss to the surroundings ✓	Accept "stored energy" for "potential energy".	2

C	Question	Answers	Notes	Total
16.	а	Award [1] for one similarity:		
		both increase binding energy/energy yield «per nucleon»		
		OR		
		mass loss/defect in both «nuclear» reactions/mass converted to energy «from $E = mc^2$ »		
		OR		
		both produce ionizing radiation ✓		
		Award [2 max] for any two differences:	Accept "small nuclei" OR "smaller atomic masses of nuclei" for "light	
		in fusion, light nuclei combine to form heavier ones AND in fission, heavier nuclei split into lighter ones ✓	nuclei" AND "large nuclei" OR "greater atomic masses of nuclei" for "heavier nuclei".	
		fission produces radioactive/nuclear waste <i>AND</i> fusion does not ✓	Do not accept "no/less waste produced for fusion".	3
		fission is caused by bombarding with a neutron «or by spontaneous fission» AND fusion does not		
		OR		
		fission can initiate a chain reaction <i>AND</i> fusion does not ✓		
		fusion releases more energy <u>per unit mass</u> of fuel than fission ✓	Accept "higher specific energy for	
		fuel is easier to obtain/cheaper for fusion reactions ✓	fusion".	
		fission reactions can be controlled in a power plant <i>AND</i> fusion cannot «yet» ✓		
		fusion reactor less likely to cause a large-scale technological disaster compared to fission ✓		
		fusion less dangerous than fission as radioactive isotopes produced have short half-lives so only cause a threat for a relatively short period of time ✓		
		fusion is in experimental development <i>AND</i> fission used commercially ✓		

Question		on	Answers	Notes	Total
16.	b		$\frac{1}{64}/\frac{1}{2^6}/0.016$ \checkmark	Accept "1.6 %".	1
16.	С	i	$M_{\rm r}(^{235}{\rm UF_6}) = 235 + (19.00 \times 6) / 349$ ${\it OR}$ $M_{\rm r}(^{238}{\rm UF_6}) = 238 + (19.00 \times 6) / 352 \checkmark$ « $\frac{{\rm rate~of~effusion~of~}^{235}{\rm U}}{{\rm rate~of~effusion~of~}^{235}{\rm U}} = \sqrt{\frac{352}{349}} = {\it w}~1.004 \checkmark$	Award [2] for correct final answer. Do not accept "1.00" OR "0.996".	2

- 30 -

(continued...)

(Question 16c continued)

C	Questi	ion	Answers	Notes	Total
16.	С	ii	<i>UF</i> ₆ : Structure: octahedral «solid»/square bipyramidal «solid»/«simple» molecular solid/simple molecule <i>AND</i> Bonding: covalent ✓	Accept "UF ₆ : Structure: octahedral «solid»/square bipyramidal «solid»/«simple» molecular solid/simple molecule AND weak intermolecular/London/dispersion/van der Waals'/vdW forces".	
				Accept "non-polar molecule" for "«simple» molecular solid".	
			UO₂: Structure: crystal/lattice/network «solid»/«resembles» fluorite AND Bonding: «partly» covalent ✓	Accept "giant molecular" OR "macromolecular" for "network".	
				Accept "ionic/electrostatic attractions «between ions»" for bonding in UO ₂ .	3
				Award M2 for "UO ₂ : network covalent/covalent network/giant covalent" OR "UO ₂ : network ionic/giant ionic".	
				For M1 and M2 award [1 max] for two correct structures OR two bonding types.	
			UF ₆ sublimes/evaporates/boils at low temperature ✓	Accept any specified low temperature in the range 56–65 °C.	

– 31 –

C	Question	Answers	Notes	Total
17.	а	$C_{7}H_{15}COOC_{5}H_{11} (I) + CH_{3}OH (I) \rightarrow C_{7}H_{15}COOCH_{3} (I) + C_{5}H_{11}OH (I)$ OR $C_{13}H_{26}O_{2} (I) + CH_{4}O (I) \rightarrow C_{9}H_{18}O_{2} (I) + C_{5}H_{12}O (I)$ OR $CH_{3}(CH_{2})_{6} \longrightarrow O(CH_{2})_{4}CH_{3} \longrightarrow H$ $CH_{3}C \longrightarrow H_{3}C \longrightarrow H_{2} \longrightarrow H_{2}$ $H_{3}C \longrightarrow H_{2} \longrightarrow H_{2} \longrightarrow H_{2}$	Accept correct equation in any format eg, skeletal, condensed structural formula, etc. Accept equations with equilibrium arrow.	1
17.	b	less viscous «and so does not need to be heated to flow» OR less likely to undergo incomplete combustion OR fewer intermolecular/London/dispersion forces OR vaporizes easier ✓	Ignore equation and products in 17a. Accept "van der Waals'/vdW" for "London".	1

Q	uesti	on	Answers	Notes	Total
18.	а		ALTERNATIVE 1 B/Ga in circle AND Type of semiconductor: p-type ✓	Accept any group 13 element labelled as p-type.	
			showing 3 electron pairs <i>AND</i> one lone electron «and hole» ✓	Accept showing 7 electrons.	
			ALTERNATIVE 2 P/As in circle AND Type of semiconductor: n-type ✓	Accept any group 15 element labelled as n-type.	2
			showing 4 electron pairs <i>AND</i> one non-bonded electron ✓	Accept showing 9 electrons. Accept dots or crosses for electrons.	
18.	b	i	conjugated C=C/carbon–carbon double bonds OR «multiple» alternating C=C/carbon–carbon double bonds		
			 OR «extensive electron» conjugation/delocalization OR «many» fused/conjugated aromatic/benzene rings ✓ 		1
18.	b	ii	complex B has greater conjugation/delocalization ✓		1

– 33 –

Option D — Medicinal chemistry

Question	Answers	Notes	Total
19.	LD ₅₀ : amount/dose that kills 50% of the population ✓	Award [1 max] for "LD ₅₀ used in animal trials AND TD ₅₀ used in human studies".	
	TD₅₀: amount/dose that negatively affects/produces toxic effects in 50% of the population ✓		2

– 34 –

-35-

C	uestion	Answers	Notes	Total
20.	С	water causes hydrolysis OR aspirin reacts with water ✓	Accept "aspirin will convert into salicylic/ethanoic acid". Do not accept "aspirin dissolves in water" OR "aspirin absorbs water/is hygroscopic".	2
		heat increases the rate of hydrolysis OR heat increases the rate of the reaction with water ✓		

– 36 **–**

2	١.	morphine has hydroxyl/OH groups/is more polar <i>AND</i> diamorphine has ester/ethanoate/acetate groups/is less polar/is lipid soluble ✓	Accept "alcohol/hydroxy" for "hydroxyl" but not "hydroxide".		
		crossing blood brain barrier is easier for non-polar/less polar compounds/for lipid soluble compounds ✓	Accept "fats" for "lipid".	2	

Q	uestio	n Answers	Notes	Total
22.	а		Accept ionic equation: $2H^{+}(aq) + CO_3^{2-}(aq) \rightarrow CO_2(g) + H_2O(I)$	1
22.	b	« $\frac{0.750 \times 2}{100.09}$ =» 0.0150 «mol HCl» ✓		1
22.	С	inhibits the secretion of stomach acid/H⁺ ✓	o not accept "hydrogen/H/H ₂ " for "H ⁺ ".	
		«active metabolites» bind «irreversibly» to «receptors of the» proton pump ✓ M.	Accept "PPI/proton pump inhibitor" for 1/12.	2
			Accept "H+/K+ ATPase" for "proton nump".	

– 37 –

Question	Answers	Notes	Total
23.	Any two of: hydroxyl ✓	Accept "alcohol/hydroxy" for "hydroxyl", "carboxylic acid" for "carboxyl" and "amide/carboxamide" for "amido".	
	carboxyl/carbonyl ✓ ether ✓	Accept "amino/amine" OR "imine/imino" but these are not correct as they are part of the guanidino group.	2 max
	amido/carbonyl √	Accept "alkenyl/alkene/carbon to carbon double bond" but not "C=C" OR "carbon double bond".	
		Accept "carbonyl" only once. Accept "heterocyclic ring" for "ether".	

Question	Answers	Notes	Total
24.	Hazardous solvent:	Accept correct names (either IUPAC or	
	Any one of:	generic) or formulas.	
	methanal/formaldehyde ✓	Do not accept inorganic acids such as HCI , H_2SO_4 , etc.	
	methanol ✓		
	chlorinated solvent/carbon tetrachloride/methylene chloride/dichloromethane ✓	Accept any specific chlorinated solvent.	
	diethyl ether/ethoxyethane ✓		
	benzene	Accept other hazardous solvents.	
	OR		
	methyl benzene/toluene		
	OR		
	«1,2/1,3/1,4» dimethylbenzene/«ortho/o-/meta/m-/para/p-» xylene ✓		0
	Green solvent:	Do not accept any solvent given as	2 max
	Any one of:	both hazardous and green.	
	water ✓		
	«supercritical/liquid» carbon dioxide/supercritical fluids ✓	Award [2] for combination "Hazardous	
	ethanol «only if replacing a hazardous solvent» ✓	solvent: dimethylformamide/DMF/N,N-dimethylmethanamide" AND "Green	
	propan-2-ol/2-propanol/isopropanol «only if replacing a hazardous solvent» 🗸	solvent: methanol «only if replacing a	
	propanone/acetone «only if replacing a hazardous solvent» 🗸	hazardous solvent»".	
	ethyl ethanoate/ethyl acetate «only if replacing a hazardous solvent» 🗸		
	organic carbonates/dimethyl carbonate/diethyl carbonate/ethylene carbonate/propylene carbonate ✓		
	ionic liquids ✓	Accept other green solvents but not	
	fluorous solvents	"solvents from biomass/food waste".	

Questio	n Answers	Notes	Total
25.	Any two of: stripping the bark kills Pacific yew tree ✓	Accept "Pacific yew rare/slow- growing/takes 100/200 years to mature" for M1.	
	plant cell fermentation «and extraction»/PCF technology/use of plant cell cultures/Taxol «precursors» produced by biosynthesis/fungi/yeast/e-coli/use of natural enzymes «more sustainable process»		
	OR		
	Taxol produced semi-synthetically/Taxol from 10-DAB/10-deacetylbaccatin ✓		
	uses renewable resources		
	OR		
	use «needles/leaves/twigs of» European/common yew/yew from Himalayas ✓		
	«sustainable» process has eliminated «high proportion of» hazardous chemicals/waste		2 max
	OR		
	«sustainable» process has eliminated several solvents/«sustainable» process uses greener solvents/«sustainable» process recycles/reuses solvents	Accept "synthesis of Taxol using chiral	
	OR	auxiliaries increases efficiency of process as single enantiomer formed" for M4.	
	«sustainable» process has eliminated several «drying» steps/«sustainable» process has eliminated lots of the work-up after the synthesis		
	OR		
	«sustainable» process has increased energy efficiency		
	OR		
	«sustainable» process has no intermediates		
	OR		
	«sustainable» process uses more efficient catalysts ✓		

Question		on	Answers	Notes	Total
26.	а		$^{32}P \rightarrow ^{32}S + ^{0}_{-1}\beta \checkmark$	Accept "e⁻/e/β" instead of " ⁰ ₋₁ β".	1
26.	b		ALTERNATIVE 1		
			$\alpha \lambda = \frac{\ln 2}{14.3} = 0.04847 \text{ «day}^{-1} \text{»} \checkmark$		
			$\mbox{\em κ} m(^{32}\mbox{P}) = 2.63 \times 10^{-8} \mbox{ mol} \times 31.97 \mbox{ g mol}^{-1} \times \mbox{\em $e^{-0.04847 \times 57.2}$} = \mbox{\em s} 5.26 \times 10^{-8} \mbox{\em κ} \mbox{\em g} \mbox{\em \checkmark}$		
			ALTERNATIVE 2		
			« $\frac{57.2}{14.3}$ =» 4 «half-lives passed»		2
			OR		
			$\mbox{\ensuremath{\mbox{$^{(32P)}$}}}$ = 1.64 × 10 ⁻⁹ mol × 31.97 g mol ⁻¹ =» 5.26 × 10 ⁻⁸ «g» ✓	Award [2] for correct final answer.	
				Accept any value in the range " $5.24-5.26 \times 10^{-8}$ «g»".	

C	Question	Answers alpha-emitting isotopes/ ²¹² Pb/ ²²⁵ Ac attached to drugs/antibodies/chelating ligands/carriers ✓	Notes Accept "radionuclide" for "isotope".	Total
26.	С			
		Award [2 max] for any two of:		
		absorbed by «cancer/growing» cells		
		OR		
		bind to «cancer/growing» cell receptors ✓		
		alpha particles have high ionizing density/power ✓	Accept "alpha particles are highly ionizing".	3
		short-range of emission «of alpha-particles»	Accept "alpha particles have low	
		OR	penetrating power".	
		healthy tissues less affected «as slower cell growth»		
		OR	Accept "used to treat	
		local effect «on dispersed/spread/metastasised cancers» ✓	dispersed/spread/metastasised cancers" OR "can be used to map the distribution of cancer cells in the body".	

-43-