Markscheme

May 2018

Chemistry

Higher level

Paper 3

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1.	a	i	consists of single/one sheet/layer «of carbon atoms» \checkmark graphene has no density measurement OR graphene has no distance between layers data OR graphene has large specific surface area «compared to graphite» \checkmark	Do not accept "sp"" alone without reference to single/one sheet/layer. Accept "thickness of one atom" OR "consists of a plane" for M1.	2
1.	a	ii	Any one of these alternatives: ALTERNATIVE 1 $\left\lvert\, \begin{aligned} & « \frac{1.3 \times 10^{11}}{76 \times 10^{6}} » \\ & 1.7 \times 10^{3} / 1711 \checkmark \end{aligned}\right.$ ALTERNATIVE 2 $1600 \times 76 \times 10^{6}=1.2 \times 10^{11}$ «is less than tensile strength of graphene» \checkmark ALTERNATIVE 3 $\frac{1.3 \times 10^{11}}{1600}=8.1 \times 10^{7}$ «is greater than upper end of tensile strength for graphite» \checkmark	Accept any value in the range 1700-27 083. Answer may be expressed in scientific notation or otherwise. Accept any value calculated which is less than the graphene tensile strength based on a value chosen from within the $4.8-76 \times 10^{6}$ range.	1

(Question 1a continued)

Question			Answers	Notes	Total
1.	a	iii	«graphene has a high electron mobility of» 15000-200000 «cm ${ }^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ » \checkmark	A specific value or range of values must be given. Accept any value in the 15000-200000 «cm ${ }^{2} V^{-1} s^{-1} »$ range.	1
1.	b		smaller/zero \checkmark no delocalized electrons/electrons are bound/electrons not free to move/electrons not free to roam OR localized electrons «in sigma bonds» OR large band gap \checkmark	Accept "diamond is a dielectric" OR "diamond does not conduct electricity" for M2. Award [1 max] for just "immobile/less mobile". Award [2] for "electrons immobile «in diamond" due to the large band gap" OR "electrons «in diamond» immobile since electrons are localized «in the sigma bonds»".	2

Question		Answers	Total		
1.		shorter bonds in graphene OR bonds in graphene intermediate between single and double OR bond order in graphene is 1.33 OR delocalization creates stronger bonds OR shorter bonds are stronger \checkmark stronger/shorter bonds require higher temperature/faster thermal motion to be altered OR stronger/shorter bonds require greater energy to be broken \checkmark	$\mathbf{2}$		

Question			Answers	Notes	Total
2.	a		Any two of: Ethene: «carbon-carbon» double bond AND Ethane: «carbon-carbon» single bond \checkmark ethene has a shorter carbon-carbon bond «than ethane» \checkmark Ethene: planar/two-dimensional/2-D AND Ethane: tetrahedral «carbons»/ three-dimensional/3-D OR Ethene: each carbon surrounded by three electron domains AND Ethane: each carbon surrounded by four electron domains OR different molecular geometries/shapes \checkmark rotation about carbon-carbon inhibited/blocked in ethene AND not in ethane \checkmark «H-C-C/H-C-H» bond angles different OR Ethene: «bond angles approximately» 120° AND Ethane: $109.5 / 109^{\circ} \checkmark$	Do not accept "different number of atoms/hydrogens/bonds" etc. Accept "Ethene: unsaturated AND Ethane: saturated" OR "Ethene: has a double bond AND Ethane: does not" OR "Ethene: two flexible bonds between carbon atoms AND Ethane: one". Accept any reasonable physical description of the two different molecular models based on a variety of kits for M1. For ethene, accept any bond angle in the range 117-1220. Award [2] if any two of the concepts listed are shown in a correctly labelled or annotated diagram. Award [1 max] for two correct statements for either molecule but with no comparison given to the other. Award [1 max] for suitable unlabeled diagrams of both compounds.	2 max

Question			Answers	Notes	Total
2.	b	\mathbf{i}	6 carbon atoms labelled in correct positions \checkmark both nitrogen atoms labelled in correct positions \checkmark bromine $\boldsymbol{A N D}$ chlorine atoms labelled in correct positions \checkmark		

(Question 2b continued)

Question			Answers	Notes	Total
2.	b	ii	accurate bond angles/lengths can be measured OR «using mathematical functions» can calculate expected shapes based on energy minimizations OR better visualization of possible bond rotations/conformation/modes of vibration OR can visualize macromolecules/proteins/DNA OR hydrogen bonding «networks» can be generated/allows intermolecular forces «of attraction» to be simulated OR more variety of visualization representations/can observe space filling OR can produce an electron density map/electrostatic potential map OR once model is generated file can be saved for future use/computer models can be shared globally by scientists OR helps design molecules of biological significance/assists in drug design «using libraries» OR can predict molecular interactions with solvents/can predict physical properties/can predict spectral data/can examine crystal structures OR «often» easier to construct/modify «model» \downarrow	Accept "precise" for "accurate". Accept "computer generated structural representation is normally what is expected in order to be published «in a scientific journal»". Accept "easier to see different sizes of atoms/atomic radii".	1

(Question 2b continued)

| Question | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | \mathbf{b} | iii | bonds within ring have resonance
 OR
 contains delocalized «conjugated pi» electrons in ring \boldsymbol{V} |
| There must be reference to a ring or
 cyclic structure. | | | |
| Accept "alternating single and double | | | |
| bonds in a ring". | | | |
| Accept "ring which shows | | | |
| resonance/delocalization". | | | |
| Accept "follows Hückel/4n +2 rule". | | | |
| Do not accept "contains one or more | | | |
| benzene rings". | | | |

Section B

Option A - Materials

Question		Answers	Notes	Total
3.	a	Alloy: mixture of metal with other metals/non-metals OR mixture of elements that retains the properties of a metal \checkmark Composite: reinforcing phase embedded in matrix phase \checkmark	Award [1 max] for implying "composites only have heterogeneous/nonhomogeneous compositions".	2
3.	b	effective for yttrium «but less/not for nickel» \checkmark points on nickel graph do not lie on $« y=x »$ line OR cannot be used for low concentrations of nickel OR concentration of nickel is lower than recorded value \checkmark	Accept "ICP-OES is more accurate for lower yttrium concentrations than higher concentrations" for M1. Accept [Ni] and [Y] for concentrations of nickel and yttrium. Accept "detection limit for yttrium is lower than for nickel" for M2. Award [1 max] for "more accurate for yttrium at lower concentrations AND nickel at higher concentrations".	2

Question			Answers	Notes	Total
3.	C	i	Graph 1: determines wavelength of maximum absorption/maximum intensity «for vanadium» \downarrow Graph 2: determines absorption of known concentrations «at that wavelength» OR estimates [V]/concentration in a sample using «the signal» intensity \checkmark	Do not accept just "determines maximum wavelength/ $\lambda_{\max }$ " for M1. Do not accept "calibration curve" for M2.	2
3.	c	ii	$\begin{aligned} & « 14950=392.19 x+147.62 » \\ & x=37.74 « \mu \mathrm{~g} \mathrm{~kg}^{-1} » \end{aligned}$	Answer must be given to four significant figures. Do not accept values obtained directly from the graph.	1
3.	c	iii	vanadium reduced in first reaction AND oxidized in second reaction OR $\mathrm{V}_{2} \mathrm{O}_{5}$ oxidizes SO_{2} in first reaction $\boldsymbol{A N D} \mathrm{VO}_{2}$ reduces O_{2} in second reaction OR vanadium returns to original oxidation state «after reaction» \checkmark provides an alternative reaction pathway/mechanism «with a lower activation energy» \downarrow	Do not accept "reactants adsorb onto surface AND products desorb". Accept "oxidation number" for "oxidation state".	2

Question			Answers	Notes	Total
4.	a	i	$2 \checkmark$		1
4.	a	ii	$n \lambda=2 d \sin \theta$ OR $\begin{aligned} & \theta=\sin ^{-1}\left(\frac{n \lambda}{2 d}\right) \checkmark \\ & \theta=« \sin ^{-1}\left(\frac{150}{2 \times 303}\right)=» 14.3 «^{\circ} » \end{aligned}$	Award [2] for correct final answer.	2
4.	a	iii	$m=« \frac{50.94}{6.02 \times 10^{23}}=» 8.46 \times 10^{-23} « \mathrm{~g} » \downarrow$		1
4.	a	iv	$\begin{aligned} & « 303 \mathrm{pm}=303 \times 10^{-10} \mathrm{~cm} \\ & V=«\left(303 \times 10^{-10}\right)^{3}=» 2.78 \times 10^{-23} « \mathrm{~cm}^{3} » \end{aligned}$		1
4.	a	v	$\begin{aligned} & « 8.46 \times 10^{-23} \mathrm{~g} \times 2=» 1.69 \times 10^{-22} \text { «g» } \\ & d=« \frac{1.69 \times 10^{-22} \mathrm{~g}}{2.78 \times 10^{-23} \mathrm{~cm}^{3}}=» 6.08 « \mathrm{~g} \mathrm{~cm}^{-3} » \end{aligned}$	Accept any value in the range $6.07-6.09 « \mathrm{~g} \mathrm{~cm}{ }^{-3} » .$ Award [2] for correct final answer.	2

Question			Answers	Notes	Total
4.	b	i	Any one of these alternatives: ALTERNATIVE 1 disrupt enzyme binding sites \checkmark which can inhibit/over-stimulate enzymes \checkmark ALTERNATIVE 2 disrupt endocrine system \checkmark because they compete for active sites of enzymes/cellular receptors \checkmark ALTERNATIVE 3 form complexes/coordination compounds \checkmark which can bind to enzymes \checkmark ALTERNATIVE 4 act as oxidizing/reducing agents OR act as catalysts \checkmark which can initiate unwanted reactions \checkmark	Accept "can undergo oxidationreduction reactions" for M1 in Alternative 4.	2
4.	b	ii	$\mathrm{V}^{4+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{V}^{5+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\bullet \mathrm{OH}(\mathrm{aq}) \checkmark$	Do not accept • on H. Accept answer without \bullet.	1

Question			Answers	Notes	Total
5.	a			Do not accept syndiotactic (alternating orientation of the CH_{3} groups), eg, for M1 or M2. Accept any correct atactic ordering of CH_{3} groups. Penalize missing hydrogens or incorrect bond connectivities once only. Accept skeletal structures. Ignore continuation bonds, brackets and " n " indices in structures.	2
5.	b		Any two of: Recycling: shredded/melted/reformed AND Reuse: used in its current form \checkmark recycling is more energy intensive «than reusing» \checkmark recycling degrades the quality of plastic but reusing «typically» does not $\sqrt{ }$ recycling breaks down original product to form a new product whereas reuse extends product life \checkmark		2 max

Question			Answers	Notes	Total
5.	c	i	Any one of these alternatives: ALTERNATIVE 1 Polyester: produced by condensation/esterification polymerization \checkmark Polyethene: produced by addition polymerization \checkmark ALTERNATIVE 2 Polyester: reaction between monomers/molecules containing two functional groups per molecule \checkmark Polyethene: reaction between monomers/molecules containing a carbon-carbon double bond/C=C \checkmark ALTERNATIVE 3 polyester polymerization forms a by-product/ $/ \mathrm{H}_{2} \mathrm{O} \checkmark$ polyethene has no by-products/100\% atom economy \checkmark	Accept the names of different catalysts used for each polymerization as an alternative answer.	2
5.	c	ii	more pliable/flexible materials OR more durable/non-corrosive/longer-lasting materials OR greater variety of materials OR lower density OR can be clear/translucent \checkmark	Accept "more adaptable". Do not accept just "more useful".	1

Option B — Biochemistry

Question			Answers	Notes	Total
7.	a		Type of reaction: condensation OR esterification/triesterification OR nucleophilic substitution/nucleophilic displacement/SN2 By-product: water/ $\mathrm{H}_{2} \mathrm{O} \checkmark$	Do not accept just "substitution/displacement".	2
7.	b		ALTERNATIVE 1 $\begin{aligned} & « \frac{334}{253.8}=» 1.32 \text { AND « } \frac{100}{304.5}=» 0.328 \\ & « \frac{1.32}{0.328} \approx » 4 \checkmark \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & « 334 \times \frac{304.5}{100} \approx » 1017 \checkmark \\ & « \frac{1017}{253.8} \approx » 4 \checkmark \end{aligned}$	Award [2] for correct final answer.	2

Question			Answers	Notes	Total
7.	c		 glycerol backbone as circled \checkmark ester section as boxed \checkmark	Accept a skeletal structure. Penalize missing hydrogens or incorrect bond connectivities once only in Option B. Accept condensed formula for ester. Do not accept structures with one or two ester groups.	2
7.	d		has affected consumption of trans-fats/cis-fats/saturated fats/unsaturated fats/ hydrogenated/artificially altered fats OR reduce/eliminate trans-fats/increase in cis-fats OR reduce/eliminate saturated fats OR increase unsaturated fats \checkmark	Do not accept "decrease in fat" alone. Accept "lipid" for "fats".	1
7.	e			Ignore significant figures in M1. Award [2] for correct final answer. Award [1 max] for incorrect significant figures in final answer.	2

Question		Answers	Notes	Total
8.	d	ALTERNATIVE 1 $« \mathrm{pH}=6.36+\log \left(\frac{2.50 \times 10^{-2}}{1.25 \times 10^{-3}}\right)=»$ $7.66 \checkmark$ ALTERNATIVE 2 $« K_{a}=4.4 \times 10^{-7}=\left[\mathrm{H}^{+}\right]\left(\frac{2.50 \times 10^{-2}}{1.25 \times 10^{-3}}\right),\left[\mathrm{H}^{+}\right]=2.2 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$ » «pH =» 7.66 V	Do not accept " $<\mathrm{pH}=$ » 8 ".	1
8.	e		Penalize missing hydrogens or incorrect bond connectivities once only in Option B. Wedges AND dashes must be used.	1
8.	f	$\text { « } \frac{0.725}{49650 \mathrm{dm}^{3} \mathrm{~cm}^{-1} \mathrm{~mol}^{-1} \times 1.00 \mathrm{~cm}}=» 1.46 \times 10^{-5} \text { «mol dm}{ }^{-3} » \checkmark$		1
8.	g	0.65 « $\mu \mathrm{g} \mathrm{cm}^{-3} \geqslant \checkmark$	Accept any value in the range $0.60-0.70 « \mu \mathrm{~g} \mathrm{~cm}{ }^{-3}$ ».	1

Question		Answers	Notes	Total
9.		Any two of: replaces plastics with biodegradable/starch/cellulose based plastics \checkmark use enzymes instead of polluting detergents/phosphates OR use of enzymes means lower temperatures can be used OR use enzymes instead of emulsifiers to treat oil spills OR use enzymes to produce esters at lower temperatures/without sulfuric acid \checkmark replace organic/toxic solvents with carbon dioxide \checkmark replace polymers from fossil fuel with bamboo/renewable resources \checkmark develop paint resins reducing production of volatile compounds «when paint is applied» \checkmark industrial synthesis of ethanoic/acetic acid from methanol and carbon monoxide has 100% atom economy \checkmark energy recovery \checkmark	Accept formulas for names. Award mark for any other reasonable specific green chemistry example that prevents the release of pollutants/toxic chemicals into the environment by changing the method or the materials used. Do not award mark for methods that involve clean-up of pollutants from the environment such as host-guest chemistry or alternative energy sources.	2 max

Question		Answers	Notes	Total
10.	a	Vitamin A: fat soluble/soluble in non-polar solvents AND non-polar/long hydrocarbon backbone/chain \checkmark Vitamin C: water soluble AND contains 4 hydroxyl groups/contains many hydroxyl groups/forms «many» H -bonds with water \checkmark	Accept "Vitamin A: fat soluble/soluble in non-polar solvents as it contains only one hydroxyl group whose H-bonds with water are not strong enough to overcome London/dispersion/vdW forces between Vitamin A molecules". Accept "lipid" for "fats". Accept "alcohol" OR "hydroxy" OR "OH groups" for "hydroxyl" but not "hydroxide". Award [1 max] for "Vitamin A: fat soluble AND Vitamin C: water soluble" with no or incomplete explanation.	2
10.	b	vitamin A oxidized to «11-cis-»retinal \downarrow extended conjugation OR extensive delocalization \checkmark cis-retinal converts to trans-retinal through absorption of light \checkmark	Accept "vitamin A/hydroxyl/hydroxy/alcohol/ $\mathrm{CH}_{2} \mathrm{OH}$ group oxidized to aldehyde/CHO «group in retinal»".	3

Question		Answers	Notes	Total
11.	a	 curve below original curve «showing lower affinity for oxygen» beginning at $0 \checkmark$	Award mark if end of student curve does not finish at same location as original curve.	1
11.	b	Any two of: foetal hemoglobin has higher affinity for oxygen «than normal hemoglobin» \checkmark foetal hemoglobin is less sensitive to inhibitors/2,3-bisphosphoglycerate/ 2,3-BPG/DPG «than normal hemoglobin» \checkmark foetal hemoglobin contains two gamma units instead of the two beta units found in adult hemoglobin \checkmark		2 max

Question		Answers	Notes	Total
12.		Any two of: pentose «sugar» OR deoxyribose \checkmark phosphate «group» \checkmark «organic» nitrogenous base OR nucleobase OR nucleic base OR purine OR pyrimidine \checkmark	Accept names or formulas. Accept "ribose" for M1. Do not accept "phosphoric acid". Accept the four bases together: "adenine, cytosine, thymine, guanine".	2 max

Option C - Energy

Question			Answers	Notes	Total
13.	a		Any two of: high energy content/high energy density/high specific energy OR high enthalpy of combustion/very exothermic enthalpy of combustion \checkmark shortage of alternatives OR alternatives are expensive OR oil is relatively cheap OR oil is «still» abundant/common \checkmark well-established technology OR easy for consumers to obtain OR commonly used \checkmark easy to store OR easy to transport OR easy to extract \checkmark produces energy at a reasonable rate \checkmark	Accept "high potential energy" for M1.	2 max

Question			Answers	Notes	Total
13.	b	i	fuels can be compressed more without undergoing «unwanted» auto-ignition \checkmark	Accept "burns smoother without undergoing «unwanted» auto-ignition" OR "fuel does not auto-ignite".	1
13.	b	ii	produces more branched chain hydrocarbons «with higher octane rating» OR produces aromatics «which have higher octane rating» OR produces cyclohexanes «which have higher octane rating» \checkmark	Accept "increase branches". Do not accept "produces benzene". Do not penalize for "benzene" if penalty applied in 2.b.iii. Accept "produces cyclic structures".	1
13.	C		$\begin{aligned} & n=6 \checkmark \\ & « \Delta G^{\ominus}=-n F E^{\ominus}=6 \mathrm{~mol} \times 96500 \mathrm{C} \mathrm{~mol}^{-1} \times 0.576 \mathrm{~V}=»-333504 \mathrm{~J} /-334 \mathrm{~kJ} \\ & \text { «Efficiency }=\frac{\Delta G}{\Delta H}=\frac{-334}{-726}=» 0.459 / 45.9 \% \text {, } \end{aligned}$	Award [3] for correct final answer.	3

Question			Answers	Notes	Total
14.	a		Any three of: IR/long wavelength/low frequency radiation radiated/emitted by the Earth's «surface absorbed in the bonds» \checkmark bond length $/ \mathrm{C}=\mathrm{O}$ changes OR «asymmetric» stretching of bonds OR bond angle/OCO changes \checkmark polarity/dipole «moment» changes OR dipole «moment» created «when molecule absorbs IR» \checkmark «some of» energy is then re-radiated towards «the surface of the» Earth \checkmark	Do not accept terms such as "reflect" OR "bounced" OR "trapped".	3 max

Question			Answers	Notes	Total
14.	b		Any two of: $\mathrm{H}_{2} \mathrm{O}$ AND «relatively» greater abundance/stable concentration/less effective at absorbing radiation/lower GWP so not much overall effect on global warming/climate change \checkmark $\mathrm{CH}_{4} / \mathrm{N}_{2} \mathrm{O} / \mathrm{CFCs} / \mathrm{SF}_{6} / \mathrm{O}_{3} / \mathrm{HCFCs}$ AND more effective «than CO_{2} » at absorbing radiation/higher GWP so could contribute to global warming/climate change \checkmark PFCs/SF $/{ }_{6} / \mathrm{NF}_{3} /$ Some CFCs $\boldsymbol{A N D}$ have very long life in atmosphere so could contribute «in the future» to global warming/climate change \checkmark	Accept names or formulas. Accept two different gases with the same effect for [2]. Award [1 max] for identifying the names/formulas of two greenhouse gases. Accept "greenhouse factor" for "GWP" but not just "greenhouse effect". For M3, do not allow "CFC" alone as only some have long lifetimes (eg, CFC-115, CFC-113).	2 max

15.	a	« $\frac{813 \mathrm{~K}-296 \mathrm{~K}}{813 \mathrm{~K}} \times 100 »=64 « \% » \checkmark$		
15.	\mathbf{b}	35% of chemical/potential energy available in coal is transformed to electricity/electrical energy \checkmark not all chemical energy from burning fuel transferred into heating water OR energy dispersed elsewhere/energy lost due to friction of moving parts OR heat loss to the surroundings \checkmark	Accept "stored energy" for "potential energy".	2

Question			Answers	Notes	Total
16.	a		Award [1] for one similarity: both increase binding energy/energy yield «per nucleon» OR mass loss/defect in both «nuclear» reactions/mass converted to energy «from $E=m c^{2} »$ OR both produce ionizing radiation \checkmark Award [2 max] for any two differences: in fusion, light nuclei combine to form heavier ones AND in fission, heavier nuclei split into lighter ones \checkmark fission produces radioactive/nuclear waste AND fusion does not \checkmark fission is caused by bombarding with a neutron «or by spontaneous fission» AND fusion does not OR fission can initiate a chain reaction $A N D$ fusion does not \checkmark fusion releases more energy per unit mass of fuel than fission \checkmark fuel is easier to obtain/cheaper for fusion reactions \checkmark fission reactions can be controlled in a power plant $\boldsymbol{A N D}$ fusion cannot «yet» \checkmark fusion reactor less likely to cause a large-scale technological disaster compared to fission \checkmark fusion less dangerous than fission as radioactive isotopes produced have short half-lives so only cause a threat for a relatively short period of time \checkmark fusion is in experimental development $\boldsymbol{A N D}$ fission used commercially \checkmark	Accept "small nuclei" OR "smaller atomic masses of nuclei" for "light nuclei" AND "large nuclei" OR "greater atomic masses of nuclei" for "heavier nuclei". Do not accept "no/less waste produced for fusion". Accept "higher specific energy for fusion".	3

Question			Answers	Notes	Total
16.	b		$\frac{1}{64} / \frac{1}{2^{6}} / 0.016 \checkmark$	Accept "1.6\%".	1
16.	C	i	$M_{r}\left({ }^{235} \mathrm{UF}_{6}\right)=235+(19.00 \times 6) / 349$ OR	Award [2] for correct final answer. Do not accept "1.00" OR "0.996".	2

(continued...)
(Question 16c continued)

Question			Answers	Notes	Total
16.	c	ii	UF6: Structure: octahedral «solid»/square bipyramidal «solid»/«simple» molecular solid/simple molecule AND Bonding: covalent \checkmark	Accept " U_{6} : Structure: octahedral "solid»/square bipyramidal «solid»/«simple» molecular solid/simple molecule AND weak intermolecular/London/dispersion/van der Waals'/vdW forces". Accept "non-polar molecule" for "«simple» molecular solid".	
			UO_{2} : Structure: crystal/lattice/network «solid»/«resembles» fluorite AND Bonding: «partly» covalent $\sqrt{ }$	Accept "giant molecular" OR "macromolecular" for "network". Accept "ionic/electrostatic attractions «between ions»" for bonding in UO_{2}. Award M2 for " UO_{2} : network covalent/covalent network/giant covalent" OR " UO_{2} : network ionic/giant ionic".	3
			UF ${ }_{6}$ sublimes/evaporates/boils at low temperature \checkmark	For M1 and M2 award [1 max] for two correct structures OR two bonding types. Accept any specified low temperature in the range $56-65^{\circ} \mathrm{C}$.	

Question		Answers	Notes	Total
17.	a	$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COOC}_{5} \mathrm{H}_{11}(\mathrm{I})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I}) \rightarrow \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COOCH}_{3}(\mathrm{I})+\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}(\mathrm{I})$ OR $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2}(\mathrm{I})+\mathrm{CH}_{4} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}(\mathrm{I})+\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}(\mathrm{I})$ OR	Accept correct equation in any format eg, skeletal, condensed structural formula, etc. Accept equations with equilibrium arrow.	1
17.	b	less viscous «and so does not need to be heated to flow» OR less likely to undergo incomplete combustion OR fewer intermolecular/London/dispersion forces OR vaporizes easier \checkmark	Ignore equation and products in 17 a. Accept "van der Waals'/vdW" for "London".	1

Question			Answers	Notes	Total
18.	a		ALTERNATIVE 1 B/Ga in circle AND Type of semiconductor: p-type \checkmark showing 3 electron pairs AND one lone electron «and hole» \checkmark ALTERNATIVE 2 P/As in circle AND Type of semiconductor: n-type \checkmark showing 4 electron pairs $\boldsymbol{A N D}$ one non-bonded electron \checkmark	Accept any group 13 element labelled as p-type. Accept showing 7 electrons. Accept any group 15 element labelled as n-type. Accept showing 9 electrons. Accept dots or crosses for electrons.	2
18.	b	i	conjugated $\mathrm{C}=\mathrm{C} /$ carbon-carbon double bonds OR «multiple» alternating $\mathrm{C}=\mathrm{C} /$ carbon-carbon double bonds OR «extensive electron» conjugation/delocalization OR «many» fused/conjugated aromatic/benzene rings \checkmark		1
18.	b	ii	complex B has greater conjugation/delocalization \checkmark		1

Option D - Medicinal chemistry

Question		Answers	Notes	Total
19.		$L D_{50}$: amount/dose that kills 50% of the population \checkmark $T D_{50}$: amount/dose that negatively affects/produces toxic effects in 50% of the population \checkmark	Award [1 max] for " $L D_{50}$ used in animal trials AND TD 50 used in human studies".	2

Question			Answers	Notes	Total
20.	a	i	«irreversibly» binds/bonds to enzyme/transpeptidase OR inhibits enzyme/transpeptidase «in bacteria» that produces cell walls OR prevents cross-linking of bacterial cell walls \checkmark cells absorb water AND burst OR cells cannot reproduce \checkmark		2
20.	a	ii	modify side chain \checkmark		1
20.	b		condensation OR esterification OR nucleophilic substitution/nucleophilic displacement/S $\mathfrak{N} 2 \checkmark$	Do not accept just "substitution/displacement".	1

| Question | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 20. | \mathbf{c} | water causes hydrolysis
 OR
 aspirin reacts with water \checkmark
 heat increases the rate of hydrolysis
 OR
 heat increases the rate of the reaction with water \checkmark | Accept "aspirin will convert into
 salicylic/ethanoic acid".
 Do not accept "aspirin dissolves in
 water" OR "aspirin absorbs water/is
 hygroscopic". |

21. \quad morphine has hydroxyl/OH groups/is more polar AND diamorphine has ester/ethanoate/acetate groups/is less polar/is lipid soluble \checkmark
crossing blood brain barrier is easier for non-polar/less polar compounds/for lipid soluble compounds \checkmark

Accept "alcohol/hydroxy" for "hydroxyl" but not "hydroxide".

Accept "fats" for "lipid".

Question		Answers	Notes	Total
22.	a	$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CaCl}_{2}(\mathrm{aq}) \checkmark$	Accept ionic equation: $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	1
22.	b	« $\frac{0.750 \times 2}{100.09}=» 0.0150$ «mol HCl»		1
22.	C	inhibits the secretion of stomach acid/ $/ \mathrm{H}^{+} \checkmark$ «active metabolites» bind «irreversibly» to «receptors of the» proton pump \downarrow	Do not accept "hydrogen/ $/ H^{\prime} / H_{2}$ " for " H^{+}". Accept "PPI/proton pump inhibitor" for M2. Accept " H^{+} / K^{+}ATPase" for "proton pump".	2

Question		Answers	Notes	Total
23.		Any two of: hydroxyl $\sqrt{ }$ carboxyl/carbonyl \checkmark ether \checkmark amido/carbonyl \checkmark	Accept "alcohol/hydroxy" for "hydroxyl", "carboxylic acid" for "carboxyl" and "amide/carboxamide" for "amido". Accept "amino/amine" OR "imine/imino" but these are not correct as they are part of the guanidino group. Accept "alkenyl/alkene/carbon to carbon double bond" but not "C=C" OR "carbon double bond". Accept "carbonyl" only once. Accept "heterocyclic ring" for "ether".	2 max

Question		Answers	Notes	Total
27.	a	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$	Accept any correct formula for reactants and products.	1
27.	b	R-OH: 1.0-6.0 «ppm» AND 1 H $\mathrm{R}-\mathrm{O}-\mathrm{CH}_{2}-:$ 3.3-3.7 «ppm» AND 2 H , $-\mathrm{CH}_{3}:$ 0.9-1.0 «ppm» AND 3 H ,	Award [1] for the ratio of 1:2:3 (in any order). Award [2] for three correct chemical shifts without integration. Award [1] for two correct chemical shifts without integration. For each chemical shift accept a specific value within the range. Assignment of proton to fragment (eg, $\mathrm{R}-\mathrm{OH}$) is not required in each case.	3

